

Welcome to pyntcloud!

pyntcloud is a Python library for working with 3D point clouds.

[image: _images/pyntcloud_logo.png]
This documentation is under construction.

	Introduction

	Installation

	Contributing

	PyntCloud

	Points

	Filters

	Filters - Dev

	I/O

	I/O - Dev

	Samplers

	Samplers - Dev

	Structures

	Structures - Dev

	Scalar Fields

	Scalar Fields - Dev

Introduction

This page will introduce the general concept of point clouds and illustrate
the capabilities of pyntcloud as a point cloud processing tool.

Point clouds

Point clouds are one of the most relevant entities for representing three dimensional
data these days, along with polygonal meshes (which are just a special case of point clouds with
connectivity graph attached).

In its simplest form, a point cloud is a set of points in a cartesian coordinate
system.

Accurate 3D point clouds [https://en.wikipedia.org/wiki/Point_cloud] can nowadays be (easily and cheaply)
acquired from different sources. For example:

	RGB-D devices: Google Tango [http://get.google.com/tango/], Microsoft Kinect [https://developer.microsoft.com/en-us/windows/kinect], etc.

	Lidar [https://en.wikipedia.org/wiki/Lidar].

	Camera + Photogrammetry software (Open source Colmap [https://colmap.github.io/], Agisoft Photoscan [http://www.agisoft.com/], …)

pyntcloud

pyntcloud enables simple and interactive exploration of point cloud data, regardless of which sensor was used to generate it or what the use case is.

Although it was built for being used on Jupyter Notebooks [http://jupyter.org/], the library is suitable for other kinds of uses.

pyntcloud is composed of several modules (as independent as possible) that englobe
common point cloud processing operations:

	Filters / Filters - Dev

	geometry

	I/O / I/O - Dev

	learn

	neighbors

	plot

	ransac

	sampling

	Scalar Fields / Scalar Fields - Dev

	Structures / Structures - Dev

	utils

Most of the functionality of this modules can be accessed by the core class of
the library, PyntCloud, and its corresponding methods:

from pyntcloud import PyntCloud
io
cloud = PyntCloud.from_file("some_file.ply")
structures
kdtree_id = cloud.add_structure("kdtree")
neighbors
k_neighbors = cloud.get_neighbors(k=5, kdtree=kdtree_id)
scalar_fields
ev = cloud.add_scalar_field("eigen_values", k_neighbors=k_neighbors)
filters
f = cloud.get_filter("BBOX", min_x=0.1, max_x=0.8)
...

Although most of the functionality in the modules can be used without constructing
a PyntCloud instance, the recommended workflow for the average user is the one showcased above.

Installation

Basic Installation

With Python 3.5 or greater you can install pyntcloud using pip:

pip install pyntcloud

You can also install with miniconda:

https://conda.io/miniconda.html

And running:

conda install pyntcloud -c conda-forge

Installation for developers

Check Contributing

Contributing

At the very least, you need a Python(>3.5) installation (an isolated environment, i.e conda, is recommended) and the following requirements:

	numpy

	numba

	scipy

	pandas

	flake8

	pytest

Then you can clone the repo and install it in editable mode:

git clone https://github.com/daavoo/pyntcloud.git
pip install -e pyntcloud

From the root of the repo, you can run:

for getting warnings about syntax and other kinds of errors
flake8

for running all the tests
pytest -v

PyntCloud

PyntCloud is the core class that englobes almost all the functionality available
in pyntcloud.

Whereas, in its classical form, the point clouds are understood as simple sets of points, a
PyntCloud is a Python class with several attributes and methods that enable a more
fluent way of manipulating this entity.

Attributes

PyntCloud’s attributes serve to store information about the point cloud and the
structures associated with it.

Each PyntCloud’s instance some predefined attributes:

	centroid

	mesh

	Points

	structures

	xyz

You may also add other attributes to your own PyntCloud instance.

The information about this attributes is reported by the __repr__ method:

from pyntcloud import PyntCloud

cloud = PyntCloud.from_file("test/data/filters/filters.ply")

print(cloud)

PyntCloud
6 points with 0 scalar fields
0 faces in mesh
0 kdtrees
0 voxelgrids
Centroid: 0.45000001788139343, 0.45000001788139343, 0.45000001788139343
Other attributes:

Methods

Available methods are very intuitive.

Methods starting with the word add incorporate new information to some existing PyntCloud attribute.

Methods starting with the word get return some information extracted from the PyntCloud.

I/O methods read/write information from/to different 3D formats.

Other methods are useful things that don’t fit in any of the above categories.

ADD METHODS

	
PyntCloud.add_scalar_field()

	

Scalar Fields

Scalar Fields - Dev

	
PyntCloud.add_structure()

	

GET METHODS

	
PyntCloud.get_filter()

	

Filters

Filters - Dev

	
PyntCloud.get_sample()

	

Samplers

Samplers - Dev

	
PyntCloud.get_neighbors()

	

	
PyntCloud.get_mesh_vertices()

	

I/O METHODS

I/O

	
PyntCloud.from_file()

	

	
PyntCloud.to_file()

	

OTHER METHODS

	
PyntCloud.apply_filter()

	

	
PyntCloud.split_on()

	

	
PyntCloud.plot()

	

Points

A classic point cloud is just a set of points.

In pyntcloud points is one of many attributes of the core class PyntCloud, although it’s probably the most important.

This attribute is internally represented as a
pandas DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html].

It is highly recommended to read the pandas DataFrame documentation in order to
understand the possibilities for manipulating the point
cloud information that this entity offers.

from pyntcloud import PyntCloud

cloud = PyntCloud.from_file("test/data/filters/filters.ply")

cloud.points

 x y z
0 0.0 0.0 0.0
1 0.1 0.1 0.1
2 0.2 0.2 0.2
3 0.5 0.5 0.5
4 0.9 0.9 0.9
5 1.0 1.0 1.0

Restrictions

Two of the few restrictions that you will find in pyntcloud are related to the points
attribute.

	points must be a pandas DataFrame

If you want to instantiate a PyntCloud using the constructor, you have to pass
a pandas DataFrame as the points argument.

If you want to change the points argument, you have to change it for a new
pandas DataFrame.

import numpy as np

from pyntcloud import PyntCloud

points = np.random.rand(1000, 3)

cloud = PyntCloud(points)

TypeError: Points argument must be a DataFrame

	points must have ‘x’, ‘y’ and ‘z’ columns

The DataFrame that you use as points must have at least this 3 columns.

import numpy as np

import pandas as pd

from pyntcloud import PyntCloud

points = pd.DataFrame(np.random.rand(1000, 3))

cloud = PyntCloud(points)

ValueError: Points must have x, y and z coordinates

Basic manipulation

As mentioned above, the fact of having the points information in a pandas DataFrame
brings many possibilities regarding the analysis and manipulation of this data.

As you can read in Working with scalar fields, one of the key features of pyntcloud
is the flexibility that it offers regarding how you can add information and manipulate points.

You can quickly get statistical information about points with a single command:

from pyntcloud import PyntCloud

cloud = PyntCloud.from_file("test/data/filters/filters.ply")

cloud.points.describe()

 x y z
count 6.000000 6.000000 6.000000
mean 0.450000 0.450000 0.450000
std 0.423084 0.423084 0.423084
min 0.000000 0.000000 0.000000
25% 0.125000 0.125000 0.125000
50% 0.350000 0.350000 0.350000
75% 0.800000 0.800000 0.800000
max 1.000000 1.000000 1.000000

You can use different plots to visualize the information in points:

cloud.points.boxplot()

[image: _images/boxplot.png]
from pandas.tools.plotting import scatter_matrix

scatter_matrix(cloud.points, diagonal="kde", figsize=(8,8))

[image: _images/scatter_matrix.png]
You can perform operations over points like getting which points are above some
“z” coordinate:

above_03 = cloud.points["z"] > 0.3
above_03

0 False
1 False
2 False
3 True
4 True
5 True
Name: x, dtype: bool

You can find more information about this kind of operation in Working with scalar
fields.

As mentioned above, to fully understand the manipulation possibilities that the
pandas DataFrame brings, is better to take a look at
its documentation [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html].

Filters

As the name suggest, filters are used to discard points from the point cloud based on a condition that is evaluated against all the points in the point cloud.

All filters take a PyntCloud (and extra information in some cases) as input and produce a boolean array as output.

This boolean array separates the points that passed the filter and will thus be retained (True) from those which did not and will thus be removed (False).

Filters are accessible through:

	
PyntCloud.get_filter()

	

We group the available filters based on what the requirements for computing them are.

Only require XYZ

“BBOX”

Require KDTree

Required args:

kdtree: KDTree.id

kdtree = pointcloud.add_structure("kdtree", ...)

“ROR”

“SOR”

Filters - Dev

This page contains useful information for developers who want to modify / add content to the filters module.

First of all, two points of advice:

	Use the existing filters as guideline.

	Follow the general CONTRIBUTING GUIDELINES.

The Big Picture

Filters are used by the method:

	
PyntCloud.get_filter()

	

Take a look at the source code in order to get a general overview of how filters are being used. All filters are classes and all have the same
methods.

The sections below will guide you trough the filters module explaining how you can create your own filters or where you need
to look in order to modify existing ones.

Base Class

All filters must inherit from the base class Filter and implement its abstract methods.

The base class is located at pyntcloud/filters/base.py

	
class pyntcloud.filters.base.Filter(*, pyntcloud)

	Base class for filters.

At the very least, all filters receive a PyntCloud when they are instantiated.

The Filter.extract_info method must be overridden in order to extract and save the information required to compute the filter in a attribute.

See SUBMODULE BASE CLASS below for more information.

Filter.compute is where the boolean array is generated and returned. It should use the information extracted by the above method in order to decide which
points should be filtered.

See SPECIFIC FILTER CLASS below.

Submodule Base Class

Filters are grouped into submodules according to which kind of information they require to be computed.

For example, filters that require a KDTree to be computed are in pyntcloud/filters/f_kdtree.py

As the information required by all the filters in each submodule is the same, we create a submodule base class overriding the __init__ and extract_info
methods of the Filter base class.

For example, in the f_kdtree submodule there is a Filter_KDTree class from which all the filters that require a KDTree inherit.

If you don’t find a submodule that extracts the information that your new filter needs, create a new one using as guideline one of the existing ones.

Specific Filter Class

Once you have a submodule base class that extracts the right information, you have to actually create the specific class
for your filter, inheriting from the submodule base class and overriding the Filter.compute method.

If the computation of your filter requires some parameters from the user, you should override the __init__ method in order to accept those
parameters.

For example, the RadiusOutlierRemoval filter requires the user to specify a radius “r” and a number of neighbors “k”:

Let PyntCloud know about your filter

In order to do so, you have to do some things:

	Add tests at test/test_filters.py.

	Import your new filter(s) and/or submodule(s) at pyntcloud/filters/__init__.py.

	Include them in the ALL_FILTERS dictionary, giving them a string alias at pyntcloud/filters/__init__.py.

	Document them in the PyntCloud.get_filter docstring at pyntcloud/core_class.py.

	Document them at docs/filters.rst.

I/O

As mentioned in the introduction, 3D point clouds could be obtained from many
different sources, each one with its own file format.

In addition to file formats used by each manufacturer, point clouds may also be
stored in generic binary and ascii formats using different programming languages.

PyntCloud provides reading and writing routines for many common 3D file and
generic array formats (more formats will be added in the near future):

	.asc / .pts / .txt / .csv / .xyz (see ‘Note about ASCII files’ below)

	.las [https://www.asprs.org/committee-general/laser-las-file-format-exchange-activities.html]

	.npy / .npz [https://docs.scipy.org/doc/numpy-dev/neps/npy-format.html]

	.obj [https://en.wikipedia.org/wiki/Wavefront_.obj_file]

	.off [https://en.wikipedia.org/wiki/OFF_(file_format)] (with color support)

	.pcd [http://pointclouds.org/documentation/tutorials/pcd_file_format.php#pcd-file-format]

	.ply [https://en.wikipedia.org/wiki/PLY_(file_format)]

Reading

	
classmethod PyntCloud.from_file(filename, **kwargs)

	Extract data from file and construct a PyntCloud with it.

	Parameters

	
	filename (str) – Path to the file from which the data will be read

	kwargs (only usable in some formats) –

	Returns

	PyntCloud – PyntCloud instance, containing all valid elements in the file.

	Return type

	object

from pyntcloud import PyntCloud
my_point_cloud = PyntCloud.from_file("some_file.ply")

Writing

	
PyntCloud.to_file(filename, also_save=None, **kwargs)

	Save PyntCloud data to file.

	Parameters

	
	filename (str) – Path to the file from which the data will be read

	also_save (list of str, optional) – Default: None
Names of the attributes that will be extracted from the PyntCloud
to be saved in addition to points. Usually also_save=[“mesh”]

	kwargs (only usable in some formats) –

my_point_cloud is a PyntCloud instance
my_point_cloud.to_file("out_file.obj", internal=["points", "mesh"])

Alternative ways for creating PyntClouds

Even though PyntCloud includes readers for some of the most common 3D file formats,
there are many other formats and sources that you can use to store point cloud data.

That’s why although PyntCloud will include support for other file formats, it will
never cover all.

The good news is that as long as you can load the data into Python, you can create
a PyntCloud instance manually.

The key thing to understand is that you can’t just plug in the raw data into the
PyntCloud constructor; there are some restrictions.

These restrictions are covered in Points.

As long as you can adapt your data to these restrictions, you will be able
to construct a PyntCloud from formats that are not covered in from_file.

Note about ASCII files

There are many formats englobed in these kinds of files: .asc, .txt, .pts, …

Normally, the first 3 columns represent the X,Y,Z coordinates of the point and
the rest of the columns represent some scalar field associated to that point
(Maybe R,G,B values, or Nx,Ny,Nz, etc). But there is no official format specification.

Given all the possibilities that this brings, PyntCloud.from_file accepts keyword
arguments in order to let the user adjust the loading for every possibility.

Internally, PyntCloud.from_file is just calling the pandas function
.read_csv [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html] when
you give it a valid ascii format.

So check the linked documentation to explore all the possible arguments in order to
adjust them to read your ascii file.

For example, given a example.pts file with this content:

8
-0.037829 0.12794 0.004474
-0.044779 0.128887 0.001904
-0.068009 0.151244 0.037195
-0.002287 0.13015 0.02322
-0.022605 0.126675 0.007155
-0.025107 0.125921 0.006242
-0.03712 0.127449 0.001795
0.033213 0.112692 0.027686

You can construct a PyntCloud as follows:

import pandas as pd
from pyntcloud import PyntCloud

cloud = PyntCloud.from_file("example.pts",
 sep=" ",
 header=0,
 names=["x","y","z"])

I/O - Dev

Samplers

Samplers use PyntCloud information to generate a sample of points. These points might or might not have been present in the original point cloud.

For example, RandomPoints generates a sample by randomly selecting points from the original point cloud.
In this case all sample’s points were present in the original point cloud.

On the other hand, VoxelgridCentroids generates a sample by computing the centroid of each group of points inside of each occupied VoxelGrid’s cell.
In this case any of the sample’s points were present in the original point cloud.

All samplers take a point cloud as input and return a pandas DataFrame.

This pandas DataFrame can be used to generate a new PyntCloud.

All samplers are accessible trough:

	
PyntCloud.get_sample()

	

We group the available samplers based on what information is used for their computation.

Require points

“points_random_sampling”

Require mesh

pointcloud.mesh must exists.

“mesh_random_sampling”

Require VoxelGrid

Required args:

voxelgrid: VoxelGrid.id

voxelgrid = pointcloud.add_structure("voxelgrid", ...)

“voxelgrid_centers”

“voxelgrid_centroids”

“voxelgrid_nearest”

Samplers - Dev

This page contains useful information for developers who want to modify / add content to the samplers module.

First of all, two points of advice:

	Use the existing samplers as guideline.

	Follow the general CONTRIBUTING GUIDELINES.

The Big Picture

Filters are used by the method:

	
PyntCloud.get_sampler()

	

Take a look at the source code in order to get a general overview of how samplers are being used. All samplers are classes and all have the same
methods.

The sections below will guide you trough the samplers module explaining how you can create your own samplers or where you need
to look in order to modify existing ones.

Base Class

All samplers must inherit from the base class Sampler and implement its abstract methods.

The base class is located at pyntcloud/filters/base.py

	
class pyntcloud.samplers.base.Sampler(*, pyntcloud)

	Base class for sampling methods.

At the very least, all samplers receive a PyntCloud when they are instantiated.

The Sampler.extract_info method must be overridden in order to extract and save the information required to generate the sample in a attribute.

See SUBMODULE BASE CLASS below for more information.

Sampler.compute is where the sample is generated and returned. It should use the information extracted by the above method in order to generate the sample.

See SPECIFIC SAMPLER CLASS below.

Submodule Base Class

Samplers are grouped into submodules according to which kind of information they require to be computed.

For example, samplers that require a VoxelGrid to be computed are in pyntcloud/samplers/s_voxelgrid.py

As the information required by all the filters in each submodule is the same, we create a submodule base class overriding the __init__ and extract_info
methods of the Sampler base class.

For example, in the s_voxelgrid submodule there is a Sampler_Voxelgrid class from which all the samplers that require a Voxelgrid inherit.

If you don’t find a submodule that extracts the information that your new sampler needs, create a new one using as guideline one of the existing ones.

Specific Sampler Class

Once you have a submodule base class that extracts the right information, you have to actually create the specific class
for your sampler, inheriting from the submodule base class and overriding the Sampler.compute method.

If the computation of your sample requires some parameters from the user, you should override the __init__ method in order to accept those
parameters.

For example, the RandomMesh sampler requires the user to specify if the sample will use RGB and/or normal information:

Let PyntCloud know about your sampler

In order to do so, you have to do some things:

	Add tests at test/test_samplers.py.

	Import your new sampler(s) and/or submodule(s) at pyntcloud/samplers/__init__.py.

	Include them in the ALL_SAMPLERS dictionary, giving them a string alias, at pyntcloud/samplers/__init__.py.

	Document them in the PyntCloud.get_sample docstring at pyntcloud/core_class.py.

	Document them at docs/samplers.rst.

Structures

Structures are used for adding superpowers to PyntCloud instances.

For example, a VoxelGrid can be used for:

	Converting a point cloud into a valid input for a convolutional neural network.

	Finding nearest neighbors.

	Finding unconnected clusters of points in the point cloud.

	Many other cool things.

All structures are built on top of a point cloud, mesh or another structure.

You can create structures using:

	
PyntCloud.add_structure()

	

Convex Hull

	
class pyntcloud.structures.ConvexHull(points, incremental=False, qhull_options=None)

	

Delaunay3D

	
class pyntcloud.structures.Delaunay3D(points, furthest_site=False, incremental=False, qhull_options=None)

	

KDTree

	
class pyntcloud.structures.KDTree(*, points, leafsize=16, compact_nodes=False, balanced_tree=False)

	

VoxelGrid

	
class pyntcloud.structures.VoxelGrid(*, points, colors=None, n_x=1, n_y=1, n_z=1, size_x=None, size_y=None, size_z=None, regular_bounding_box=True)

	

Structures - Dev

Scalar Fields

Roughly speaking, each of the columns in the PyntCloud.points DataFrame is a Scalar Field.

Point clouds require at least 3 columns to be defined (the x,y,z coordinates); any other information associated to each point is a Scalar Field.

For example point clouds with color information usually have 3 scalar fields representing the Red, Green, and Blue values for each point.

A Scalar Field must have the same type and meaning for every point, the value is what is variable.

In the point cloud literature, Scalar Fields are restricted to be numeric (that’s where the Scalar comes from), but here we extend the Scalar Field term to defined any column of the Points DataFrame.

Scalar Fields are accessible trough:

	
PyntCloud.add_scalar_field()

	

We group the available scalar fields based on what the requirements for computing them are.

Only require XYZ

“plane_fit”

	
class pyntcloud.scalar_fields.PlaneFit(*, pyntcloud, max_dist=0.0001, max_iterations=100, n_inliers_to_stop=None)

	Get inliers of the best RansacPlane found.

“sphere_fit”

	
class pyntcloud.scalar_fields.SphereFit(*, pyntcloud, max_dist=0.0001, max_iterations=100, n_inliers_to_stop=None)

	Get inliers of the best RansacSphere found.

“custom_fit”

	
class pyntcloud.scalar_fields.CustomFit(pyntcloud, model, sampler, name, model_kwargs={}, sampler_kwargs={}, max_iterations=100, n_inliers_to_stop=None)

	Get inliers of the best custom model found.

“spherical_coords”

	
class pyntcloud.scalar_fields.SphericalCoordinates(*, pyntcloud, degrees=True)

	Get radial, azimuthal and polar values.

Require Eigen Values

Required args:

ev: list of str

ev = pointcloud.add_scalar_field("eigen_values", ...)

“anisotropy”

	
class pyntcloud.scalar_fields.Anisotropy(*, pyntcloud, ev)

	

“curvature”

	
class pyntcloud.scalar_fields.Curvature(*, pyntcloud, ev)

	

“eigenentropy”

	
class pyntcloud.scalar_fields.Eigenentropy(*, pyntcloud, ev)

	

“eigen_sum”

	
class pyntcloud.scalar_fields.EigenSum(*, pyntcloud, ev)

	

“linearity”

	
class pyntcloud.scalar_fields.Linearity(*, pyntcloud, ev)

	

“ommnivariance”

	
class pyntcloud.scalar_fields.Omnivariance(*, pyntcloud, ev)

	

“planarity”

	
class pyntcloud.scalar_fields.Planarity(*, pyntcloud, ev)

	

“sphericity”

	
class pyntcloud.scalar_fields.Planarity(*, pyntcloud, ev)

	

Require K Neighbors

Required args:

k_neighbors: (N, k) ndarray

k_neighbros = pointcloud.get_k_neighbors(k=10, ...)

“normals”

“eigen_values”

	
class pyntcloud.scalar_fields.EigenValues(*, pyntcloud, k_neighbors)

	Compute the eigen values of each point’s neighbourhood.

“eigen_decomposition”

	
class pyntcloud.scalar_fields.EigenDecomposition(*, pyntcloud, k_neighbors)

	Compute the eigen decomposition of each point’s neighbourhood.

Require Normals

pointcloud.points must have [nx, ny, nz] columns.

“inclination_deg”

	
class pyntcloud.scalar_fields.InclinationDegrees(*, pyntcloud)

	Vertical inclination with respect to Z axis in degrees.

“inclination_rad”

	
class pyntcloud.scalar_fields.InclinationRadians(*, pyntcloud)

	Vertical inclination with respect to Z axis in radians.

“orientation_deg”

	
class pyntcloud.scalar_fields.OrientationDegrees(*, pyntcloud)

	Horizontal orientation with respect to the XY plane in degrees.

“orientation_rad”

	
class pyntcloud.scalar_fields.OrientationRadians(*, pyntcloud)

	Horizontal orientation with respect to the XY plane in radians.

Require RGB

pointcloud.points must have [red, green, blue] columns.

“hsv”

	
class pyntcloud.scalar_fields.HueSaturationValue(*, pyntcloud)

	Hue, Saturation, Value colorspace.

“relative_luminance”

	
class pyntcloud.scalar_fields.RelativeLuminance(*, pyntcloud)

	Similar to grayscale. Computed following Wikipedia.

“rgb_intensity”

	
class pyntcloud.scalar_fields.RGBIntensity(*, pyntcloud)

	Red, green and blue intensity.

Require VoxelGrid

Required args:

voxelgrid: VoxelGrid.id

voxelgrid = self.add_structure("voxelgrid", ...)

“euclidean_clusters”

	
class pyntcloud.scalar_fields.EuclideanClusters(*, pyntcloud, voxelgrid_id)

	Assing corresponding cluster to each point inside each voxel.

“voxel_n”

	
class pyntcloud.scalar_fields.VoxelN(*, pyntcloud, voxelgrid_id)

	Voxel index in 3D array using ‘C’ order.

“voxel_x”

	
class pyntcloud.scalar_fields.VoxelX(*, pyntcloud, voxelgrid_id)

	Voxel index along x axis.

“voxel_y”

	
class pyntcloud.scalar_fields.VoxelY(*, pyntcloud, voxelgrid_id)

	Voxel index along y axis.

“voxel_z”

	
class pyntcloud.scalar_fields.VoxelZ(*, pyntcloud, voxelgrid_id)

	Voxel index along z axis.

Scalar Fields - Dev

This page contains useful information for developers that want to modify / add content to the scalar_fields module.

First of all, two points of advice:

	Use the existing scalar_fields as guideline.

	Follow the general CONTRIBUTING GUIDELINES.

The Big Picture

Filters are used by the method:

	
PyntCloud.add_scalar_field()

	

Take a look at the source code in order to get a general overview of how scalar fields are being used. All scalar fields are classes and all have the same
methods.

The sections below will guide you trough the scalar fields module explaining how you can create your own scalar fields or where you need
to look in order to modify existing ones.

Base Class

All filters must inherit from the base class ScalarField and implement its abstract methods.

The base class is located at pyntcloud/scalar_fields/base.py

	
class pyntcloud.scalar_fields.base.ScalarField(*, pyntcloud)

	Base class for scalar fields.

At the very least, all scalar fields receive a PyntCloud when they are instantiated.

The ScalarField.extract_info method must be overridden in order to extract and save in a attribute the information required to compute the scalar field.

See SUBMODULE BASE CLASS below for more information.

ScalarField.compute is where the new DataFrame columns are generated.

See SPECIFIC SCALAR FIELD CLASS below.

Submodule Base Class

Scalar fields are grouped in submodules according to which kind of information they require to be computed.

For example, scalar fields that require a VoxelGrid to be computed are in pyntcloud/scalar_fields/sf_voxelgrid.py

As the information required by all the scalar fields in each submodule is the same, we create a submodule base class overriding the __init__ and extract_info
methods of the ScalarField base class.

For example, in the sf_voxelgrid submodule there is a ScalarField_Voxelgrid class from which all the scalar fields that require a VoxelGrid inherit.

If you don’t find a submodule that extracts the information that your new scalar field needs, create a new one using as guideline one of the existing ones.

Specific Scalar Field Class

Once you have a submodule base class that extracts the right information, you have to actually create the specific class
for your scalar field, inheriting from the submodule base class and overriding the ScalarField.compute method.

If the computation of your scalar requires some parameters from the user, you should override the __init__ method in order to accept those
parameters.

For example, the SphericalCoordinates scalar field (in pyntcloud/scalar_fields/sf_xyz.py) requires the user to specify if the output should be in degrees or not:

Let PyntCloud know about your filter

In order to do so, you have to do some things:

	Add tests at test/test_sf.py.

	Import your new scalar field(s) and/or submodule(s) at pyntcloud/scalar_fields/__init__.py.

	Include them in the ALL_SF dictionary, giving them a string alias at pyntcloud/scalar_fields/__init__.py.

	Document them in the PyntCloud.add_scalar_field docstring at pyntcloud/core_class.py.

	Document them at docs/scalar_fields.rst.

Index

 A
 | C
 | D
 | E
 | F
 | H
 | I
 | K
 | L
 | O
 | P
 | R
 | S
 | T
 | V

A

 	
 	Anisotropy (class in pyntcloud.scalar_fields)

C

 	
 	ConvexHull (class in pyntcloud.structures)

 	
 	Curvature (class in pyntcloud.scalar_fields)

 	CustomFit (class in pyntcloud.scalar_fields)

D

 	
 	Delaunay3D (class in pyntcloud.structures)

E

 	
 	EigenDecomposition (class in pyntcloud.scalar_fields)

 	Eigenentropy (class in pyntcloud.scalar_fields)

 	
 	EigenSum (class in pyntcloud.scalar_fields)

 	EigenValues (class in pyntcloud.scalar_fields)

 	EuclideanClusters (class in pyntcloud.scalar_fields)

F

 	
 	Filter (class in pyntcloud.filters.base)

H

 	
 	HueSaturationValue (class in pyntcloud.scalar_fields)

I

 	
 	InclinationDegrees (class in pyntcloud.scalar_fields)

 	
 	InclinationRadians (class in pyntcloud.scalar_fields)

K

 	
 	KDTree (class in pyntcloud.structures)

L

 	
 	Linearity (class in pyntcloud.scalar_fields)

O

 	
 	Omnivariance (class in pyntcloud.scalar_fields)

 	
 	OrientationDegrees (class in pyntcloud.scalar_fields)

 	OrientationRadians (class in pyntcloud.scalar_fields)

P

 	
 	Planarity (class in pyntcloud.scalar_fields), [1]

 	PlaneFit (class in pyntcloud.scalar_fields)

 	
 	PyntCloud.add_structure() (in module pyntcloud)

 	PyntCloud.get_sample() (in module pyntcloud)

R

 	
 	RelativeLuminance (class in pyntcloud.scalar_fields)

 	
 	RGBIntensity (class in pyntcloud.scalar_fields)

S

 	
 	Sampler (class in pyntcloud.samplers.base)

 	ScalarField (class in pyntcloud.scalar_fields.base)

 	
 	SphereFit (class in pyntcloud.scalar_fields)

 	SphericalCoordinates (class in pyntcloud.scalar_fields)

T

 	
 	to_file() (pyntcloud.PyntCloud method)

V

 	
 	VoxelGrid (class in pyntcloud.structures)

 	VoxelN (class in pyntcloud.scalar_fields)

 	
 	VoxelX (class in pyntcloud.scalar_fields)

 	VoxelY (class in pyntcloud.scalar_fields)

 	VoxelZ (class in pyntcloud.scalar_fields)

 _static/plus.png

_static/up.png

_static/pyntcloud_logo_small.png

_static/up-pressed.png

_images/boxplot.png
10

0.8

0.6

0.4

02

0.0

_images/pyntcloud_logo.png

_images/scatter_matrix.png
10

08

05

04

02

08

05

04

02

08

05

04

02

00

o1

s0

s0

s0

00

>

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to pyntcloud!

 		
 Introduction

 		
 Point clouds

 		
 pyntcloud

 		
 Installation

 		
 Basic Installation

 		
 Installation for developers

 		
 Contributing

 		
 PyntCloud

 		
 Attributes

 		
 Methods

 		
 ADD METHODS

 		
 GET METHODS

 		
 I/O METHODS

 		
 OTHER METHODS

 		
 Points

 		
 Restrictions

 		
 Basic manipulation

 		
 Filters

 		
 Only require XYZ

 		
 “BBOX”

 		
 Require KDTree

 		
 “ROR”

 		
 “SOR”

 		
 Filters - Dev

 		
 The Big Picture

 		
 Base Class

 		
 Submodule Base Class

 		
 Specific Filter Class

 		
 Let PyntCloud know about your filter

 		
 I/O

 		
 Reading

 		
 Writing

 		
 Alternative ways for creating PyntClouds

 		
 Note about ASCII files

 		
 I/O - Dev

 		
 Samplers

 		
 Require points

 		
 “points_random_sampling”

 		
 Require mesh

 		
 “mesh_random_sampling”

 		
 Require VoxelGrid

 		
 “voxelgrid_centers”

 		
 “voxelgrid_centroids”

 		
 “voxelgrid_nearest”

 		
 Samplers - Dev

 		
 The Big Picture

 		
 Base Class

 		
 Submodule Base Class

 		
 Specific Sampler Class

 		
 Let PyntCloud know about your sampler

 		
 Structures

 		
 Convex Hull

 		
 Delaunay3D

 		
 KDTree

 		
 VoxelGrid

 		
 Structures - Dev

 		
 Scalar Fields

 		
 Only require XYZ

 		
 “plane_fit”

 		
 “sphere_fit”

 		
 “custom_fit”

 		
 “spherical_coords”

 		
 Require Eigen Values

 		
 “anisotropy”

 		
 “curvature”

 		
 “eigenentropy”

 		
 “eigen_sum”

 		
 “linearity”

 		
 “ommnivariance”

 		
 “planarity”

 		
 “sphericity”

 		
 Require K Neighbors

 		
 “normals”

 		
 “eigen_values”

 		
 “eigen_decomposition”

 		
 Require Normals

 		
 “inclination_deg”

 		
 “inclination_rad”

 		
 “orientation_deg”

 		
 “orientation_rad”

 		
 Require RGB

 		
 “hsv”

 		
 “relative_luminance”

 		
 “rgb_intensity”

 		
 Require VoxelGrid

 		
 “euclidean_clusters”

 		
 “voxel_n”

 		
 “voxel_x”

 		
 “voxel_y”

 		
 “voxel_z”

 		
 Scalar Fields - Dev

 		
 The Big Picture

 		
 Base Class

 		
 Submodule Base Class

 		
 Specific Scalar Field Class

 		
 Let PyntCloud know about your filter

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

